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SUMMARY

This paper is concerned with the precise localization of Hopf bifurcations in various fluid flow problems. This is
when a stationary solution loses stability and often becomes periodic in time. The difficulty is to determine the
critical Reynolds number where a pair of eigenvalues of the Jacobian matrix crosses the imaginary axis. This
requires the computation of the eigenvalues (or at least some of them) of a large matrix resulting from the
discretization of the incompressible Navier–Stokes equations. We thus present a method allowing the
computation of the smallest eigenvalues, from which we can extract the one with the smallest real part. From the
imaginary part of the critical eigenvalue we can deduce the fundamental frequency of the time-periodic solution.
These computations are then confirmed by direct simulation of the time-dependent Navier–Stokes equations.
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1. INTRODUCTION

It has become relatively easy to compute solutions of complex fluid flow problems by means of
numerical methods. Two- and three-dimensional stationary problems can now be studied on very fine
meshes, although to a lesser extent in 3D. Solutions can be computed at large Reynolds numbers in
various geometries. However, it is not always clear whether these solutions are stable in the linear
hydrodynamic sense.

In very simple geometries such as Poiseuille or Couette flows, linear stability can be easily
established by reducing the problem to one dimension using the Orr–Sommerfeld equations.1

However, in more general geometries this is no longer a simple task.
There are at least two ways to verify the stability of a stationary solution. The first one consists of

performing a direct simulation by solving the time-dependent Navier–Stokes equations, starting near
the stationary solution, and of verifying whether the corresponding time-dependent solution goes
back to the stationary solution after a certain transition time. Such a computation is rather expensive
in computational time but was nevertheless used by Fortinet al.1,2 in the case of the flow around a
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periodic array of cylinders and by Goodrichet al.3 and Gustafson and Halasi4,5 for the driven cavity
flow at different Reynolds numbers and aspect ratios.

The second approach requires the computation of the eigenvalues (or at least some of them) of a
large matrix corresponding to the linearization of the discretized Navier–Stokes equations (the
Jacobian matrix) in the neighbourhood of the stationary solution. Although large-matrix
eigenproblems are rather difficult, this approach was successfully applied in some problems.6–8

In this paper we study linear hydrodynamic stability using a combination of the two approaches
and we apply the resulting method to a wide variety of two-dimensional incompressible flow
problems to establish its flexibility. We also discuss briefly the inherent difficulties associated with
the implementation of known methods for the computation of eigenvalues in the finite element
context. Finally, numerical results are presented for the lid-driven cavity (regularized or not),
backward-facing step and periodic grooved channel problems.

2. MATHEMATICAL SETTING

The two-dimensional time-dependent incompressible Navier–Stokes equations in primitive variables
are written as

@v
@t

ÿ

1
Re
H ? �2 _g�v�� � �v ? H�v � Hq � 0;

H ? v � 0; vjx2G � g; v�x; 0� � v0�x�:
�1�

As usual,v is the velocity field,p is the pressure and_g�v� � �Hv � �Hv�T�=2 is the rate-of-strain
tensor. Boundary and initial conditions depend of course on the problem and will be made precise
later on. For the sake of simplicity we consider only Dirichlet boundary conditions, but as we shall
see in the applications, more general boundary conditions can be considered.

To study the linear hydrodynamic stability of a steady solution�

�U; �p�, we look for solutions�v; q�
of (1) of the form

v�x; t� � �U�x� � estu�x�; q�x; t� � �p�x� � estp�x�: �2�

Substituting in (1) and neglecting second-order terms, one easily obtains the eigenvalue problem

ÿ

1
Re
H ? �2 _g�u�� � �

�U ? H�u � �u ? H� �U � Hp � ÿsu;

H ? u � 0; ujx2G � 0;
�3�

where s � sr
� isi is a complex eigenvalue. The solution of (3) gives the normal mode

est
�u�x�; p�x��. The least stable mode is the normal mode corresponding to the rightmost eigenvalue.

From (2) it is easily seen that instability will occur if the real partsr of one of the eigenvaluess
becomes positive. In that case the perturbation of the stationary solution will grow exponentially.
When one pair of conjugate complex eigenvalues crosses the imaginary axis asRe increases, we
generically encounter a Hopf bifurcation: the stationary solution loses its stability and a one-
parameter family of periodic solutions bifurcates from the stationary solution. If the bifurcation is
supercritical, i.e. the branch of periodic solutions bifurcates in the direction of increasing Reynolds
number, the bifurcating solutions are stable. Moreover, the amplitudes of the periodic solutions are
O�jRe ÿ Recrj

1=2
�,9 whereRecr is the critical Reynolds number for which a Hopf bifurcation occurs.

This paper is concerned with the determination ofRecr.
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2.1. Variational formulation

We define onO (a bounded domain ofR2) the space

H1
0 �O� � fuju 2 L2

�O�;Hu 2 �L2
�O��

2
; ujx2G � 0g;

x � �H1
0 �O��

2
; q � L2

0�O� �

�

q 2 L2
�O�

�
�
�
�

�

O

qdx � 0

�

:

The variational formulation of problem (3) can be written in the following mixed form:

find s 2 C; �u; p� 2 x� q; �u; p� 6� �0; 0� such that

a �U�u; v� ÿ b�v; p� � ÿs�u; v� 8v 2 x; b�u; q� � 0 8q 2 q;
�4�

where

a �U�u; v� �
1

Re

�

O

_g�u� : _g�v� dx �

�

O

��u ? H� �U ? v � �

�U ? H�u ? v� dx;

b�u; q� �

�

O

H ? u qdx:

For the sake of completeness we give the conditions for the existence and uniqueness of the triplet
�s;u; p�.10

1. The bilinear forma �U(. , .) must be continuous onx�x. This can be established with the help
of the Sobolev embedding theorem.

2. The bilinear formb(. , .) must also be continuous onx� q and verify the Brezzi–Babu˘ska inf-
sup condition.11

3. Finally, the bilinear form must satisfy the Ga˚rding inequality:

there exist two positive constants g and a such that

a �U�v; v� � gjvj20;O5akvk2
1;O 8v 2 x;

�5�

wherej:j0;O is theL2
�O� norm andk:k1;O is the norm onx.

It is also possible to formulate the problem in a simpler way. Introducing the space of divergence-
free functions,

v � fv 2 x such that H ? v � 0g;

problem (4) can also be written as:

find s 2 C; u 2v;u 6� 0 such that

a �U�u; v� � ÿs�u; v� 8v 2v:

�6�

The finite element discretization of such a problem results in a generalized eigenproblem of the
form

Ax � ÿsMx; �7�

whereA andM are the stiffness and mass matrices respectively. In the next section we show how to
compute the eigenvalues most susceptible to crossing the imaginary axis.

3. COMPUTATION OF EIGENVALUES

As the matrix in (7) is of very large size, the computation of all the eigenvalues would be prohibitive.
The critical eigenvalue is the first one to cross the imaginary axis asReincreases. We only know that
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its real part is zero and that its modulus is, most probably but not certainly, small (see Reference 12,
Remark 2.4.1). It is therefore natural to look only at the eigenvalues with smallest modulii. This can
be done with the help of the simultaneous inverse iteration method described by Jennings,13 which
allows the computation of thene smallest eigenvalues. We have to guess the number of eigenvalues
to compute in order to obtain the critical one. This is the major weakness of the proposed method and
will be discussed more fully at the end of this section.

We now give a brief description of the algorithm, referring the reader to References 13 and 14 for
more details.

1. Construct a set ofm random trial vectors

U0 � �u1;u2; . . . ;um�;

which is orthonormalized by a modified Gram–Schmidt procedure.
2. For k 5 1 solve them linear systems

AVk � MUk :

3. Construct the iteraction matrix

Bk � UT
k Vk :

4. Compute the eigenvalues ofBk by the QR method:

BkPk � PkLk;

whereLk is the diagonal matrix containing the eigenvalues.
5. Invert and sort (by increasing modulus) the eigenvalues ofBk .
6. Compute the eigenvectors

Wk � VkPk :

7. OrthonormalizeWk by the modified Gram–Schmidt method. These new orthonormal vectors
become the columns of the new (updated) matrixUk .

8. Perform a convergence test on the eigenvalues. If it fails, return to step 2.

The numberm of starting trial vectors is set tone � 8 according to Bathe and Wilson.15 This
particular choice enhances the convergence of the algorithm. It is worth noticing that them column
vectors ofVk in step 2 should be divergence-free. More precisely, these vectors should be divergence-
free in a discrete (finite element) sense denoted asHh ? v � 0.11 To achieve this, a Uzawa algorithm16

is used to solve them linear systems occurring in step 2. For each column vectorvl; l � 1; 2; . . . ; m,
this gives the following algorithm.

0) Initialization: �vl;0; pl;0� given arbitrarily.
1) Iterations: forn5 0; �vl;n; pl;n� being known, finddvn satisfying

�

O

2
Re

_g�dvn� : _g�w� � �

�U ? H�dvn ? w � �dvn ? H� �U ? w � r1�Hh ? dvn��Hh ? w�

� �

dx

�

�

O

2
Re

_g�vl;n� : _g�w� � �

�U ? H�vl;n ? w

� �

dx

�

�

O

��vl;n ? H� �U ? w � pl;n�Hh ? w� � r1�Hh ? vl;n��Hh ? w� ÿ ul ? w� dx:
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2) Update:

vl;n�1 � vl;n ÿ dvn; pl;n�1 � pl;n ÿ r1Hh ? vl;n�1:

3) Convergence test.
The constraint

Hh ? vl � 0

in each problem of step 2 is imposed through the Lagrange multiplierpl (the pressure). The
penalization parameterr1 is set to 107. The Q2–P1 element of Figure 1 was chosen for the
discretization of the velocities and pressure respectively. This element is one of the best for two-
dimensional computations. In fact, this element is second-order in space�O�h2

�� and satisfies the
discrete inf-sup condition as described in Reference 17.

The choice of an appropriate mixed finite element discretization for the detection of bifurcations of
incompressible fluids has not received a lot of attention. In a recent paper, Gervaiset al.7 have
conducted a series of experiments on the influence of the discretization on the prediction of the
dynamical behaviour of the lid-driven cavity flow. In this work they have used a stationary code
coupled with subspace iteration to monitor the evolution of the spectrum as the Reynolds number
increases. The main conclusions of their work are that linear finite elements are too diffusive and
local mass conservation (i.e. at the element level) seems to play an important role in the precision of
the predicted critical values. In this respect,Cÿ1 pressure approximations have all the necessary
qualities and, among all possible choices, theQ2–P1 element is considered to be one of the best.

In the course of the above-mentioned research effort the last two authors have also tested various
modifications of the subspace iteration algorithm in the hope of reducing the workload associated
with the fact that a direct use of the above algorithm requires the determination of thep smallest
eigenvalues, wherep can be rather large. Even if the discretizations used there were different from
the one employed here, we believe that in the lid-driven cavity case the conclusions remain the same.
It might be worth noticing, however, that the computation of a larger part of the spectrum may reveal
interesting features of the flow which would otherwise be missed.

The first modification that was studied, which has been advocated by several authors,18,19involves
Mobius conformal transformation of the complex plane and leads one to work with an appropriate
Cayley transform ofA in lieu of A itself. All the variants that we have tested failed. The reason for
this failure may be related to the mapping properties of the Mobius transform itself. Roughly
speaking, what one aims at when using this transform is to map a vertical half-planeRe�z� > a,
containing the spectrum ofA, onto the unit disc with the point at infinity going onto the point one.
The value ofa is chosen in such a way that the real part of the critical eigenvalue is the nearest to it,
so that its image becomes the dominant eigenvalue of the corresponding Cayley transform. However,
any neighbourhood of the point at infinity will then be mapped onto a lunar-like neighbourhood of
one. If the spectrum ofA comprises eigenvalues of large modulus, its Cayley transform will have a
spectrum with a dominant eigenvalue near the unit circle and a large cluster of unwanted eigenvalues

Figure 1.Q2–P1 element
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very near the point one, the worst case being the one for which some of the large eigenvalues have a
real part near that of the critical eigenvalue. The rate of convergence of these eigenvalues will be so
near one that it will be almost impossible to kill the corresponding components of the eigenvectors in
any reasonable time. As we shall show, the lid-driven cavity corresponds to such a spectrum structure
and even the clever method proposed by Cliffeet al.18 did not seem applicable. However, as
demonstrated by Greshoet al.,6 this approach proved very useful for the backward-facing step case.

The second very interesting alternative that has been considered is the modification of the iterative
procedure resulting from the replacement of the powers ofA by some other polynomial
transformation. The choice of the transform, often called a filter, is dictated by the part of the
spectrum that one wants to separate from the critical eigenvalue. In References 20 and 21 the use of
Chebychev polynomials is advocated for the problem of determining the leftmost or rightmost
eigenvalues. This possibility was tested with the help of the EB12 code of Duff and Scott,22 in which
this type of filter is combined with subspace iteration. The method seems to work fine for the lid-
driven cavity problem as long as the desired eigenvalues are simultaneously the rightmost (leftmost)
and those of largest modulus. Unfortunately, this is not the case in our situation and after a period of
wild oscillations, the code generates worthless approximations with warnings of insufficient
precision, regardless of the number of guard vectors that we use. This does not seem to be related to
the code itself, which works very well in various situations involving small matrices.

There could be problems of an algorithmic nature associated with the fact that we try to work in the
divergence-free velocity subspace. To challenge this idea, we have implemented the modification of
the eigenvalue problem suggested by Cliffeet al.,23 which requires us to work in the whole space and
to control the spurious eigenvalues associated with the use of the Lagrange multiplier. Our attempt to
generate the leftmost eigenvalues of that problem with the help of EB12 met with success when we
used small meshes but failed on finer ones. Again, this seems to be related to the structure of the
spectrum itself: for the lid-driven cavity problem there are a lot of unwanted eigenvalues in a narrow
vertical band containing the critical one, some of them with larger imaginary part. It could be that in
such a situation the determination of the ellipses used to define the Chebychev polynomials is an ill-
conditioned problem. Although this possibility is evoked by Saad20 himself, we do not have any
theoretical arguments to support it. As far as we are concerned, the correct implementation of those
ideas in the lid-driven cavity case is still an open question on which we are currently working.

There is one last point which deserves some comment. It concerns the possibility of improving the
approximation of the critical value of the Reynolds number by considering an extended system. One
such approach is proposed by Griewank and Reddien.24 The reason why we could not consider such
an approach is purely algorithmic: in the process of determining the spectrum of the matrixA, the
only thing that we can safely do is multiplyAÿ1 by a vector. We do not even haveA at hand, since its
explicit construction would require the knowledge of a basis of the subspaces of discrete velocity
field satisfying

Hh ? vh � 0:

We do not know of any such basis. This fact alone forbids the use of any method requiring the
construction ofA2 or the factorization ofA or its reduction to Hessenberg form as suggested by
Grienwank and Reddien.24 These methods are quite useful for problems involving medium-sized
matrices. Their implementation in the finite element context will, however, require further
investigations into matrix-free methods of resolution of the extended system.

In view of the above-quoted difficulties, our approach does not allow us to be very affirmative
about the critical nature of the bifurcation, since we might very well have missed a preceding one. To
get around that problem, it was simpler for us to use direct simulation as described in the next section.
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4. DIRECT SIMULATIONS

To ascertain the results of our eigenvalue computations, direct simulations will also be presented
consisting of solving the time-dependent Navier–Stokes equation (1), starting with some initial
condition (usually from rest).

The numerical methodology for direct computation is similar to the one used for the computation
of the eigenvalues. A method based on a combination of the Uzawa algorithm and Newton–Raphson
as introduced in Reference 25 is used to solve the non-linear incompressible Navier–Stokes
equations. The time discretization is performed using a fully implicit second-order Gear scheme. The
reader is referred to References 1 and 2 for a complete description of the numerical methodology.

During the simulation the velocity signalv�t� at some points in the domain is stored.
Approximately 100,000 time steps are performed and the first time steps are eliminated since they
correspond to the transient state. The last 216 points are then used for the construction of the phase
portraits and for the Fourier analysis.

The phase portrait is simply a plot ofv�t� versusv�t � T�, whereT is an almost arbitrary time delay.
If the signalv�t� is periodic,T should be chosen in an appropriate way, in particular far enough from
the period of the signal, to avoid a phase portrait compressed along the diagonal. With a proper
choice forT a periodic signal will result in a closed curve in the phase portrait. Finally, the Fourier
analysis allows the computation of the fundamental frequencyf1 of the signalv�t�, which, in view of
the Hopf bifurcation theorem,9 can be deduced from the imaginary part of the critical eigenvalue
through the relation

s
i
cr � 2pf1 � O�Re ÿ Recr�:

This last equation makes it possible to compare the eigenvalue computation with the direct
simulation.

5. NUMERICAL RESULTS

We now present numerical results for various problems. In each case we will specify the number of
computed eigenvalues necessary to obtain the critical one. We will also specify the critical Reynolds
number, plot the least stable mode and verify our results by direct computation using our time-
dependent Navier–Stokes solver.

In all applications the strategy is the following.

1. For a given Reynolds number a stationary solution is computed.
2. This stationary solution is then injected into the eigenproblem (7) and a number of eigenvalues

are then computed.
3. If no eigenvalue is on the right of the real axis, the Reynolds number is increased and we return

to step 1.
4. If one pair of eigenvalues has a positive real part, the Reynolds number is reduced (using a

bisection method) until we find the critical Reynolds numberRecr.
5. When the critical Reynolds number has been located, a direct simulation is performed by

solving the time-dependent Navier–Stokes equations at Reynolds numbers aroundRecr.
6. Comparisons are made between the frequency of the periodic solution and the imaginary part of

the critical eigenvalue.
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5.1. Poiseuille flow

The above strategy has first been tested on the Poiseuille flow. The critical Reynolds number was
found to be 5772, in very good agreement with classical results.26 The complete results are reported
in Reference 1.

5.2. Square lid-driven cavity

The square cavity problem is probably one of the most standard test problems used for the analysis
of numerical methods for the Navier–Stokes equations. Although it is not possible to give an
analytical solution, the geometry is so simple that most numerical codes have been tested on this
problem, since it is easy to make comparisons with existing results in the literature. Solutions at
relatively large Reynolds numbers can now be computed with high precision. The question of the
stability of these solutions has been raised a few times7,27and we will try to give a complete analysis.

In this problem,O is the unit square�0; 1� � �0; 1� of Figure 2. We assume the boundary conditions

u�x; y� �
�0; 0� if y < 1;
�1; 0� if y � 1;

�

The boundary conditions are singular at the upper corners. We have assumed that the velocity is
(1, 0) on the top wall, including both corners.

Previous studies have shown the presence of a Hopf bifurcation, but its precise location�Recr� is
still unknown. Bruneau and Jouron28 observed transition to turbulence for a Reynolds number lower
than 7500 by solving the Navier–Stokes equations with a high-resolution grid. However, their
methodology seems questionable, since they draw their conclusions by looking at how their
stationary numerical solution diverges at high Reynolds numbers. Gustafson and Halasi4 found
persistent oscillations (periodic solution) forRe <10,000 by solving the time-dependent Navier–
Stokes equations. They mention that the critical Reynolds number is somewhere between 5000 and
10,000. We will try to determine this critical number more precisely by solving the eigenvalue
problem (3).

Since the choice of mesh is an important issue, we have used four different meshes as illustrated in
Figure 3. The numbers of elements and degrees of freedom (DOF) are summarized in Table I.

Each grid was refined near the walls to capture the main features of the flow. For example, a steady
solution atRe � 8000 was computed with mesh 4 and is presented in Figure 4. Zooming of the top
left, bottom left and bottom right of the cavity shows the presence of important corner vortices.

For each mesh we have computed the 250 smallest eigenvalues in modulus. The number 250 was
obtained by trial and error until we found a pair of eigenvalues close to the imaginary axis. For

Figure 2. Geometry of lid-driven cavity
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example, the computed spectrum forRe � 8000 and mesh 4 is presented in Figure 5, where the
critical pair of eigenvalues can be clearly seen. Many other pairs of eigenvalues are very close to the
imaginary axis, but only one pair crosses the axis if the Reynolds number is slightly increased. The
real and imaginary parts of the eigenvector corresponding to the critical eigenvalue and also
illustrated in the same figure. As can be seen, the instability is more likely to start at the left wall.

Figure 3. Meshes (a) 1, (b) 2, (c) 3 and (d) 4 for lid-driven cavity

Table I. Mesh parameters

No. of elements No. of DOF

Mesh 1 1600 14082
Mesh 2 2116 18678
Mesh 3 2916 25814
Mesh 4 3600 31922

LOCALIZATION OF HOPF BIFURCATIONS 1193

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL24: 1185–1210 (1997)



The complete results are reported in Table II.
From these computations we can draw the following conclusions.

1. The critical Reynolds numberRecr for the square lid-driven cavity is around 8000 (this nice
number is very puzzling!).

2. We have convergence of the critical Reynolds number and critical eigenvalue with mesh
refinement.

3. The imaginary part of the critical eigenvalue (which is directly related to the frequency of the
periodic solution) is not very sensitive to mesh refinement.

To complete the discussion, we have also investigated the dynamical behaviour of the square lid-
driven cavity by performing a direct numerical simulation of the time-dependent incompressible
flow.

Starting from rest, a solution was computed atRe � 7000. The time stepDt was set to 0�01 and
mesh 3 was used. As expected, the solution reaches a steady state after a short transition time. This is
illustrated in Figure 6, where the horizontal velocity at the point (0�0147, 0�54187) (a point close to
the left wall) is plotted at each time step. In contrast,Re � 8000, just after the Hopf bifurcation has
taken place�Recr � 7998�5�, the numerical solution develops a time-periodic pattern as can be seen in
Figure 7. This periodic solution is confirmed by the closed curve of the phase portrait of Figure 8 and
by the Fourier analysis of Figure 9 (see Reference 2 for more details). From this last figure the
fundamental frequency is seen to bef1 � 0�45166. The relation betweenf1 and the imaginary part of
the critical eigenvalue is

s
i
cr � 2pf1 � 2�83786:

The agreement with our eigenvalue computation is very good. It can also be seen in Figure 9 that the
amplitude of the fundamental frequencyf1 is very small�9 � 10ÿ5

�, supporting the conclusion that
the Hopf bifurcation has just taken place and that the bifurcation is supercritical.

Let us say a few words about the periodic solution itself. A close look at the solution shows a slight
pulsation of the corner vortices on the left wall. These two vortices interact among themselves, while
the core of the flow remains almost stationary. The time-dependent solution is not illustrated, because

Figure 4. Square lid-driven cavity: streamlines atRe�8000 (mesh 4)
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the weak amplitude of the oscillations makes the solution hardly distinguishable from the stationary
solution. Of course, when the Reynolds number is further increased, the amplitude of the oscillations
increases. This topic is, however, beyond the scope of this paper and we refer to Reference 10 for a
complete description of the solution behaviour at higher Reynolds numbers.

5.3. Regularized square lid-driven cavity

The domainO is the same as in the previous problem, but the boundary conditions are now

u�x; y� �
�0; 0� if y < 1;
�16x2

�1 ÿ x�2; 0� if y � 1:

�

These boundary conditions reduce the effect of the singularity at the top corners, since the velocity is
now continuous.

Figure 5. (a) Eigenvalues and (b) real and (c) imaginary parts of critical eigenvector
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A direct simulation of this flow was performed by Shen29 using a Chebychevt-approximation of
the space variables. He concluded that the critical Reynolds numberRecr was somewhere in the
interval ]10,000, 10,500[ and that the fundamental frequency satisfies0 ? 51714 f1 4 0 ? 5183. We
will try to verify these results using mesh 4 only to avoid unnecessary (and lengthy) computations.

Our eigenvalue computation led us to a critical Reynolds numberRecr �10,255, which agrees
with the results obtained by Shen.29 However, we found a critical eigenvalues �

Figure 6. Time evolution atRe� 7000 (mesh 3)

Figure 7. Time evolution atRe � 8000 (mesh 3)

Table II. Critical eigenvalues

Recr Critical eigenvalue

Mesh 1 7745 0�383656 1074
� 2�8741i

Mesh 2 7937 0�842146 1074
� 2�8505i

Mesh 3 7998�5 0�128116 1074
� 2�8356i

Mesh 4 8000 0�547736 1074
� 2�8356i
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0 ? 3309 � 10ÿ4
� 2 ? 0802i, yielding a fundamental frequencyf1 � 0 ? 3310637 quite different from

the value claimed by Shen. Figure 11 represents the 250 computed eigenvalues atRe� 10,255. Here
again the critical pair of eigenvalues is clearly seen.

To ascertain the value off1, we have performed a direct simulation and made a Fourier analysis of
one of the velocity components to obtainf1 � 0 ? 33112, in excellent agreement with the critical
eigenvalue. We cannot explain the difference with the results of Shen.

We give in Figure 10 the streamlines of the steady solution atRe� 10,255. As expected, the
solution is similar to the one obtained atRe� 8000 for the previous problem, except that the present
solution is smoother at both top corners. This greater regularity partly explains the difference between
the critical numbers in these two problems. Another reason is that, when regularizing the boundary
condition, the average velocity at the top wall reduces to one-half instead of one. After the Hopf
bifurcation the behaviour of the time-dependent solution is similar to that of the regular lid-driven
cavity.

Figure 8. Phase portrait atRe� 8000,T � 40Dt

Figure 9. Fourier analysis atRe�8000
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A periodic solution is obtained atRe� 10,258 as illustrated in Figure 12, where we can see the
signal, the Fourier analysis and the phase portrait. Here again the amplitude is very small, confirming
that the Hopf bifurcation has just occurred.

5.4. Backward-facing step

We now study the flow of an incompressible fluid over the two-dimensional backward-facing step
of Figure 13. This test problem has been addressed by many authors using a wide variety of
numerical methods. The results are summarized in Reference 6. This last paper was an answer to a
controversy concerning the stability of the stationary solution atRe � 800. It was claimed by Kaiktsis
et al.30 that it was unstable (time-periodic).In view of the following demonstration, we believe that
the solution is stable at this Reynolds number and remains stable up toRe � 1600, where we have
stopped our computations.

The domain is described in Figure 13 withH � 1. The fluid is allowed to enter the domain at the
top half of the left side with a velocity

u�y� � �24y�0?5 ÿ y�; 0� for 04 y4 1
2 ;

mimicking the flow over a step. The Reynolds number is defined asRe � �uH=n, where �u is the
average inlet velocity. The usual no-slip condition is imposed on both horizontal walls, while a free
(natural) boundary condition

�ÿpI � 2 _g�u�� ? n � 0 �8�

is (weakly) enforced on the outlet section (on the right). In Reference 6 the proposed length of the
domain isL � 15H . As we shall see, as the Reynolds number increases, this rather short length is
not consistent with the outflow boundary condition, which supposes that the flow is fully established.
To confirm this hypothesis, we have also performed some computations on a longer domain
(L � 30H).

Figure 10. Regularized cavity: streamlines atRe� 10,255 (mesh 4)
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A stationary solution at different Reynolds numbers was computed using two different uniform
meshes of respectively 2000 (106200) and 4200 (146300) elements. The horizontal and vertical
components of the velocity along the axisy � 0 are plotted in Figure 15, showing that the flow is not
fully established even atRe � 500 for a domain length of 15H. Indeed, the horizontal component has
not yet reached a plateau, although the vertical components seems to be zero. No important
differences can be seen between the solutions on the two meshes, showing that convergence with
mesh size is most probably achieved.

The situation gets worse as the Reynolds number increases, but let us recall that one of the
objectives of Reference 6 was to determine an appropriate outflow boundary condition for this
problem. Nevertheless, it is interesting to verify that whenL � 30H , the same phenomenon can now
be seen, but only atRe � 1500, as presented in Figure 16. These last solutions were computed on a
uniform mesh of 4000 (106 40) elements.

Figure 11. (a) Eigenvalues and (b) real and (c) imaginary parts of critical eigenvector
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Figure 12. Regularized cavity:Re�10,258
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Our stationary computations give solutions similar to those in Reference 6. For example, the
solution atRe � 800 given in Figure 14 presents two major recirculation zones and shows, although
not clearly, that the flow is not yet fully developed at the outlet.

Our direct time-dependent simulation, starting once again from rest with a time step of 0�01, tends
towards the stationary solution as illustrated in Figure 17, where the streamlines are presented at
different times until the flow reaches a stationary state. As shown in Figure 18, the time evolution of
the horizontal velocity component taken at two different points in the domain proves that the time-
dependent solution returns to its stationary state after a short transition period. Moreover, starting
from the converged solution atRe � 800, another time-dependent simulation atRe � 1000 was
carried out. The solution is again deemed stable.

The computation of the eigenvalues (50 in this case) presented in Figure 19 shows no eigenvalue
on the imaginary axis (or even close to it). At this point we conclude, as in Reference 6, that the
steady viscous incompressible two-dimensional flow over a backward-facing step atRe � 800 with
the given outflow boundary condition is stable.

We have pushed the eigenvalue computations up toRe � 1600 as shown in Figure 20 and no pair
of eigenvalues has crossed the imaginary axis. However, the problem is not very relevant, since we
believe that the exit boundary condition is totally inadequate in this range of Reynolds numbers.

5.5. Periodic grooved channel problem

The periodic grooved channel problem was suggested by Ghaddaret al.31 as a perturbation of the
Poiseuille flow. This was also the case of the periodic array of cylinders studied by Fortinet al.2 In
the grooved channel flow the domain is supposed to be of infinite length and a groove with prescribed
depth is added to perturb the flow. The details of the geometry and the dimensions are reported in
Figure 21. This problem stems from the study of the cooling of computer boards and from that of
compact heat exchangers.

Referring to Figure 21, a no-slip condition is imposed on the boundariesG1;G2 andG5, while
periodicity is required on the two artificial boundariesG3 andG4, i.e.

uj
G3

� uj
G4
:

Figure 13. Geometry of backward-facing step (BFS)

Figure 14. Stationary solution atRe� 800
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Figure 15. Velocity components (L� 15H) along axisy� 0: (a) horizontal (2000 elements); (b) horizontal (4200) elements); (c)
vertical (2000 elements); (d) vertical (4200 elements)
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The periodicity condition also means that the velocity profile is not knowna priori at the entrance
G3 of the domain. Only the total flow rateQ defined by

Q �

�

G3

u ? n ds

is known. The Reynolds numberRecan then be defined as

Re �

3hV

2n
if V �

Q

2h
;

wheren is the kinematic viscosity.
Ghaddaret al.31 studied the linear stability of this flow. Their numerical investigations were

based on a direct simulation of the Navier–Stokes equations linearized about a numerically
calculated steady state. For each Reynolds number considered, they performed a computation of the
linearized time-dependent Navier–Stokes equations. They stored the velocity signal at some points
in the domain. From a plot of that signal they deduced the decay rates and the frequencyO of the
least stable mode. They could then obtain an approximation of the critical Reynolds numberRecr.
They found for the periodic grooved channel a critical Reynolds number around 900 and an
approximate frequency in the neighbourhood of 0�142. Let us see what we obtain for the same
problem.

A typical stationary solution is presented in Figure 22. For the computation of the eigenvalues for
the grooved channel flow we used a slightly different algorithm to solve them linear systems
AVk � MUk . The periodicity conditionuj

G3
� uj

G4
should be taken care of, but the most difficult part

is the imposition of the flow rateQ. We refer to Reference 32 for a complete description of how this
can be done with the help of a Lagrange multiplier. We have used three different meshes as illustrated

Figure 16. (a) Horizontal and (b) vertical velocity components (L� 30H) along axisy�0
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in Figure 23 and here again we have convergence of the critical Reynolds number and critical
eigenvalue with mesh refinement. The results are summarized in Table III.

The flow loses stability atRecr � 1113, which is slightly higher than the value predicted in
Reference 31. However, the imaginary part of the critical eigenvalue leads to a value of 0�1305 for
the frequency, which is relatively close to the one predicted by Ghaddaret al.31 Our direct simulation
on mesh 1 led to a fundamental frequencyf1 � 0?130795. Figure 24 shows the computed
eigenvalues and the eigenvector (real and imaginary parts) corresponding to the critical pair of

Figure 17. Streamlines atRe�800: (a)t� 10; (b) t� 20; (c) t� 45; (d) t� 140

Table III. Critical eigenvalues

Recr Critical eigenvalue

Mesh 1 1075�5 0�3281361075
�0�82181i

Mesh 2 1112�5 ÿ0�2360261074
�0�81995i

Mesh 3 1113 0�2890961074
�0�82007i
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Figure 18. Time evolution of horizontal velocity component atRe�800

Figure 19. Spectrum of BFS atRe� 800 (2000-element mesh)
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eigenvalues. It is clearly seen that the eigenvector is a perturbation of the classical Tolmien–
Schlichting waves of the Poiseuille flow.31

Finally, we have conducted a time-dependent simulation atRe � 1000 using mesh 1 of Figure 23.
The time evolution of the horizontal velocity component is depicted in Figure 25. This last figure
shows a significant decrease in the amplitude of the signal. This indicates that the flow is stable for
Re � 1000 and therefore the flow is also stable forRe � 975. At Re � 1075?6, another simulation
shows an oscillating velocity signal, leading to a closed curve in the phase portrait of Figure 26 and to

Figure 20. Spectra of BFS atRe� 1600: (a) 2000-element mesh; (b) 4200-element mesh

Figure 21. Geometry of grooved channel
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the power spectrum of Figure 27. We can easily conclude that the signal is periodic with a very weak
amplitude, indicating that the Hopf bifurcation has just occurred.

6. CONCLUSIONS

We have shown that the method developed in Reference 1 for the computation of eigenvalues and
eigenvectors in the Poiseuille flow can be applied to more general problems, especially those where
the steady solution is not known analytically. Various two-dimensional flow problems with different
boundary conditions were treated. The presence of a Hopf bifurcation has been clearly established in
two cases and the results are convergent with mesh refinement.

The proposed method allows the localization of the Hopf bifurcation with greater precision and
efficiency than achieved by direct simulation of the time-dependent Navier–Stokes equations.

Figure 22. Stationary solution atRe� 1113 (mesh 3)

Figure 23. Meshes (a) 1, (b) 2 and (c) 3 for periodic grooved channel
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Figure 24. (a) Eigenvalues and (b) real and (c) imaginary parts of critical eigenvector atRe� 1113 (mesh 3)

Figure 25. Velocity signal atRe�1000
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